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Abstract

The influence of latent heat and natural convection upon the melt—crystal interface in a vertical Bridgman—Stockbarger
crystal growth system is studied by numerical simulation. The temperature and velocity field are computed using an
average technique which consists of representing the solid—liquid mixture as a single continuum medium. The physical
properties of the equivalent medium are evaluated from average values which characterize each phase present in the
system. The numerical resolution is performed using a finite volume method including a high-order upwind scheme and
PISO algorithm for the pressure—velocity coupling. The numerical results show the effects of latent heat and gravity
magnitude upon the flow pattern in the melt. The consequences upon the melt—crystal interface are also analyzed.

© 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

¢ specific heat

d crystal diameter

F volume force

f mass fraction

g volume fraction or gravity acceleration
h enthalpy

h;  solid—liquid phase change latent heat
K permeability

K, permeability in Carman—Kozeny equation
k conductivity

p pressure (isotropic stress component)
Pe  Peclet number

Pr Prandtl number

Ra Rayleigh number

Ste  Stefan number

S source term

T temperature

T: solid-liquid phase change temperature
U, crystal growth velocity
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v; velocity vector components
x; Cartesian coordinate.

Greek symbols

f thermal coefficient of volume expansion
1 dynamic viscosity

p density

¢ general scalar quantity.

Superscripts and subscripts

f melt conditions

[ liquid phase
s solid phase
¢ solid or liquid phase.

1. Introduction

To increase the dimensions (diameter) of single crystals
(used in electronic components industry) produced using
growth techniques, it is necessary to understand more
accurately physical mechanisms associated with solidi-
fication problems. For example, directional solidification
processes such as crystal growth from the melt
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(Czochralski, floating-zone, Bridgman—Stockbarger .. .),
are greatly affected by physical and chemical transport
phenomena inside the liquid phase and near the melt—
crystal interface [1]. The formation of a single crystal
results from carefully controlled solid-liquid phase
change. The buoyant flow induced by temperature gradi-
ents in the melt represents the major contribution for
heat and mass transfer and affects very significantly the
resulting dopant distribution in the crystal [2]. The
relation between microscopic variations in the structure
of the crystal (crystallographic perfection of the lattice)
and macroscopic processing variables are largely
unknown. Direct numerical simulations allows to study
the consequences induced by various physical parameters
such as material properties or experimental conditions.
The crystal growth systems can be classified in two cat-
egories of confined (vertical Bridgman—-Stockbarger,
gradient freeze methods) and meniscus-defined
(Czochralski, floating zone methods). The most popular
growth method in industry is the Czochralski technique.
This method allows to produce in industrial environment
large diameter single crystals but sometimes it is more
suitable to use confined melt growth method. This
method permits for example to produce in better
conditions, exotic alloy materials with an accurate con-
trol of the stoichiometry. In confined growth techniques,
the material is loaded into an ampoule, melted and resol-
idified by varying the temperature field induced at the
surface of the ampoule by the heat sources distributed in
the furnace. Another advantage of this method is to
obtain a better control of axial temperature gradients
which are needed to produce crystals with low dislocation
densities.

The crystal growth system studied in the present article
is a vertical Bridgman—Stockbarger furnace. The heating
apparatus includes a cold and a hot isothermal zone. The
connection between these two regions is ensured by an
adiabatic zone where the solid-liquid phase change
occurs (see Fig. 1). The initially poly-crystal material is
melted and placed in the ampoule which is translated
inside the furnace at very slow scanning velocity (1-5
u/s). The accurate control of processing conditions (tem-
perature gradient, scanning velocity .. .) allows the trans-
formation of the material to a single-crystal small bar.
The aim of this study is to analyze the various flow
patterns in the melt for different gravity magnitudes and
temperature range in the furnace. We have also studied
the consequences upon the crystal-melt interface.

2. Mathematical formulation and numerical resolution

To solve the present fusion—solidification problem, we
have chosen a single domain method which consists of
reducing the multicomponent and multiphase medium as
a single continuum medium using an average technique.
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Fig. 1. Bridgman-Stockbarger crystal growth technique
(ampoule geometry and temperature boundary conditions).

In this case the solid—liquid interaction terms are
implicitly included through the definition of new average
variables. Compared to standard multi-domain approach
[3], this method does not need boundary conditions at
the solid-liquid interface. This method can be applied
with success, to complex solid—liquid phase change prob-
lems such as those encountered during dendritic growth
of alloy materials [4]. The source terms which appear in
the average conservation equations (mass, energy,
momentum) represent the interaction between the solid
and liquid phases (latent heat, friction . . .). In the momen-
tum equations, the solid-liquid interaction force is
represented with a Darcian type source term which sup-
poses that the melt flow in the phase change zone is
similar to an incompressible viscous flow in a porous
medium.

For isothermal solid-liquid phase change problems
(pure or eutectic alloy material) the two methods (single
and multi-domain) produce similar results, with a good
agreement with the analytical solutions obtained for sim-
ple configurations [5] but also with experimental obser-
vations for more complex situations [6]. Using average
approach, the average mass, energy and momentum con-
servation equations can be written as follows [7]:
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The average density, velocity vector components,
enthalpy and thermal conductivity are defined as follows:

p = gps+(1—g)pl “4)
v = [+ (1=f)v; ®)
h = fohs+ (1 =f)h (6)
k = gk+(1—g)k (M

If we suppose that the specific heats for the liquid and
the solid phases are constant, the enthalpies for each
phase (i, and h)) varie linearly with the temperature:

hy=¢,T ()
h = e T+[(c;— ) Tr+h] ©)

where /i, and T represent respectively, the solid-liquid
phase change latent heat evaluated at the reference tem-
perature Ty, which could be the melt temperature for a
pure material or the eutectic temperature for binary alloy
material. To construct the average momentum equation,
we have also supposed that the stress in the solid phase
can be neglected and the diphasic zone was saturated
(9s+g1 = 1). The requirements of mixture saturation and
a stress-free solid phase need the additional assumption
that the densities of the solid and liquid phases must be
equal (p, = p,), without which a void could form (p, > p))
or the constraint of a stress-free solid could not be
enforced (p; < p)) [8]. In this case volume (g,) and mass
fraction (f;) for the solid phase are identical and can be
evaluated directly from enthalpy field.

The modelling of liquid—solid interaction forces FY
could be represented in two different manners [9]:

—For systems in which there is no relative motion
between melt and solid (e.g. waxes and glasses), one
can represent the phase change region as a mushy fluid
with a viscosity function based on local volume solid
fraction g, (with a sharp increase as the temperature is
inferior to the liquidus temperature). In this case the
solid-liquid interaction force is F§' = 0.

—For systems in which the motions of the liquid and
solid phases are distinct (columnar dendritic growth,
e.g. metals), the melt flow in the mushy zone is rep-
resented as a viscous flow in a porous medium with a
permeability function based on g,. In this case the
solid-liquid interaction force is evaluated from Darcy
law:

e )] (10)
1

Kp

The permeability which appears in this last expression is

defined as a function of the local liquid volume fraction
as it is often used for viscous flows in porous media
(Carman—Kozeny relation):

K= Ko[i(lfg*)s} (11)
g3

K, depends on the solidification microstructures, for the
present calculation we have fixed K, =5 10~'"" which
corresponds to microstructures dimensions of 100 ym
[10].

This last model is the most appropriate approximation
of solid-liquid interaction during most of fusion—sol-
idification problems until the solid volume fraction
gs > 0.5. When g, < 0.5 the Carman—Kozeny relation
induces an over estimation of the solid-liquid friction
which supress the effects of the other volume force such
as buoyancy force. This default could be corrected using
an hybrid model which combines the two previous
approaches, a variable viscosity and a variable per-
meability [11]:

4, V
I11=H10<A JFC/) (12)
K= GKU[(I _fﬂ (4, = 0.4). (13)
9s

The introduction of ad-hoc functions F, G must reduce
the effects of an excessive dumping of the flow in the
mushy zone due to the action of the Darcy force. The
shape of these functions has been chosen according to
the theory of rheology of suspensions:

1 )
F=05— ;arctan[lOO(ys — g (14)

1 R
G= [0.5 + _arctan[100(g, gi”‘)]} . (15)

The critical value for the solid volume fraction g¢ which
separates the two solid—liquid phase change modelling is
fixed as g&™* = 0.5, which represents the limit of validity
of the Carman—Kozeny relation for viscous flows in
porous media.

The resulting set of partial differential equations is
solved using a finite-volume method [12, 13]. The time
integration is performed using a first order Euler implicit
Euler scheme. To avoid numerical diffusion, the interface
fluxes are approximated using an Ultra-Sharp scheme
which combined a centered approximation for the diffus-
ive part and a high order Upwind scheme for the con-
vective part. To guarantee none-oscillatory results this
approach is completed with an universal flux limiter [14].

The resulting set of algebraic equations is solved with a
PISO algorithm [15] which exhibits superior performance
(computational effort, good convergence and consistent
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behaviour) than other segregated algorithms such as
SIMPLE-like algorithms. The convergence criteria to
stop iterative procedure are defined from the ratio
between the residual at the kth iteration and at initial
value (it must be less than 0.05 for pressure and 0.2 for
other transported variables). To complete convergence
criteria we have also imposed that the Euclidean norm of
the residual in the whole computational domain must be
less than 107¢.

3. Numerical results and discussion

The geometry of the computational domain is rec-
tangular with a length/width shape ratio equal to 10. The
problem is solved in a fixed referential with regard to the
ampoule, therefore the cooling induced by the furnace is
represented with a time dependent temperature profile
along the lateral boundary of the ampoule characterized
with a scanning velocity U,. The temperature profile
along lateral boundary is composed by two isothermal
zones (hot temperature 7, and cold temperature Ty)
linked by an adiabatic plug zone with a width equal to
two times the ampoule diameter (Fig. 1) and animated
with a constant translation velocity U,. The boundary
conditions for the velocity vector components are v, = 0
on the ampoule wall. Excepting on the adiabatic region,
the temperature is fixed on the ampoule walls (T'= T, or
T = T, respectively, in the cold and hot region).

In order to reduce the number of physical parameters,
the transport equations (1)—(3) are transformed in dimen-
sionless form using the following reference scales:

—Ilength: crystal diameter d

—temperature (maximum temperature variation in the
furnace): AT = T,— T,

—density, specific heat and conductivity: p,, ¢, and k;

—velocity: U = kl/pc,d

—enthalpy: ¢ AT

In this case the physical system is completely defined
from four dimensionless parameters:

AT
Rayleigh number: Ra = gpeATp d”
ku
Prandtl number: Pr = ,u;{cs (16)
1
AT
Stefan number: Ste =
hy
US
Peclet number: Pe = T 17)

where U; is the crystal growth (scanning) velocity. The
calculations have been performed for a 28 x 200 mesh
grid. Previous numerical results [16] have shown that a

boundary layer regime can develop along the vertical
walls of the ampoule when the convective transport
increase in the melt. Therefore to obtain an adequate
accuracy near the ampoule wall, the mesh is locally
refined along the vertical boundaries. The tested values
for the dimensionless physical parameters are evaluated
from experimental conditions of a crystal growth oper-
ation for a semiconductor material such as gallium-doped
germanium (Ga—-Ge) [17], the corresponding values for
Prand Pe are 1072 and 5 x 1073, respectively. The solid—
liquid phase change is assumed to occur between a solidus
(T,) and a liquidus (77) temperature equal to 0.4 and 0.6
[dimensionless values defined as (T'— T,)/(T, — T;,)] which
correspond for example to a 1.25% gallium-doped ger-
manium with a temperature variation in the furnace of
250 K and microgravity conditions of 2x 10™4-2x 10~ g.

The numerical results presented on Fig. 2 show the
evolution of the velocity field obtained for Ra = 10° and
Ste™' =0 at different times during crystal growth
process. In this case, the flow pattern is symmetrical and
composed with four vortices. Excepting at the end of the
solidification, the melt flow near the crystal-melt inter-
face (which represents the most important contribution
for the crystal growth process) is not affected by the
continuous reduction of the melt region. During all the
solidification the crystal-melt interface (represented here
by the solidus isothermal curve) remains flat. The results
presented on Fig. 3 show the velocity field obtained at
intermediate time for two values of the Rayleigh number
(Ra = 10°, 10°) and three values of the Stefan number
(Ste=' =0, 5, 10). The increase of latent heat effects
induces two main phenomena, the crystal-melt interface
becomes curved and new recirculating cells appear in
the melt region. For this set of physical parameters the
solution always converges to a steady state and the flow
pattern is symmetrical. The increase of latent heat rep-
resents a supplementary energy which must be extract to
the material before solidification. This modification of
the phase-change conditions is illustrated by an increase
of the melt region in front of the solidification interface
where the transverse temperature gradient can be very
important inducing high buoyant recirculating flow. For
Ste™' = 5and Ste™' = 10 we can observe respectively six
and heigh recirculating cells in the melt. The increase of
gravity magnitude seems to have no effect upon the shape
of solidification front.

4. Conclusion

A finite volume discretization model using average
technique has been presented for the resolution of a crys-
tal growth problem. Numerical results have shown a
great influence on the latent heat upon the shape of the
phase-change front and the flow of the melted material
in this region. The gravity magnitude represented by the



D. Morvan et al.|Int. J. Heat Mass Transfer 42 (1999) 573-579 577

AR P AR R pen Vb by e v v s ey R
XX ottty g orrtee e 1ty e 000 o
XX Pttty bttty JN‘ by s e e avr o,
REX} n sttt W m EEN " e st ..m RO A
Attty "AlHA'. n .HQ-.' l*"”“"ll ’/\l/\‘
NEX] 1 Attt W m Attt W “‘"““'"l
NEX PSR R RN yoartr e e cravy ey,
sttt " .Ho..q n EER W 07 7ag s~ Nyl / \
artt oottty oottty \/ 7
Aty i artea | l""”“"' ‘

EX} wottt s ceavoy .ﬂ\,l \‘m
IXEX} PECLRETINY RPN bovs o,y o o el
RR] ottt / l/\\

XEX] e Oy /\ »}

NEX preravy ey '

Attty YR S )

ER] 1 l \! ! S

it ey “’/w 7

PN RERRTREIR l , .ﬂ\,l \-m

XN f ey gy ot

Attt

e 48wy

RERRIRL RN

Fig. 2. Flow pattern in the melt during a crystal growth process for Ra = 10° and Ste™' = 0.
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Fig. 3. Flow pattern in the melt during a crystal growth process for Ste=' = 0, 5, 10 and Ra = 10* (a—<), Ra = 10° (d-f), U, = 0.13

(a), 0.06 (b), 0.075 (c), 2.95 (d), 2.345 (e, f) (dimensionless value).

Rayleigh number seems to have no effect upon the shape
and the propagation of the melt—crystal front. The defor-
mation of this phase—change interface seems to be essen-
tially affected by the latent heat to sensible heat ratio and
the dimension of the adiabatic zone along the wall of the
ampoule.

Before their generalization these results must be con-
firmed for larger selection of the physical parameters, for
example for larger values of the crystal growth velocity
represented by the Peclet number and other configuration
of temperature boundary conditions along the lateral

face of the ampoule, including for example the effects of
heat transfer through the ampoule wall.
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